PERKEMBANGAN TEKNIK MACHINE LEARNING DALAM PEMELIHARAAN KESEHATAN STRUKTUR BANGUNAN
Main Article Content
Abstract
The structural health of buildings is a critical aspect of infrastructure management, ensuring safety, resilience, and longevity against both natural and environmental threats. In recent years, the integration of machine learning (ML) into structural health monitoring has gained momentum, offering predictive and proactive approaches to building maintenance. This review article examines the latest developments in the application of ML for structural health management in Indonesia, focusing on methods, datasets, and practical implementations. Literature published between 2019 and 2024 was analyzed to highlight trends in crack detection, post-disaster damage prediction, and sensor-based monitoring. Prominent examples include the CRACKSAFE web application employing the YOLOv8 algorithm for wall crack detection, deep neural network models for post-earthquake damage assessment, and hybrid algorithms combining correlation analysis with partial least squares to optimize sensor usage. The findings reveal that ML enhances efficiency by reducing costs, enabling real-time monitoring, and supporting rapid decision-making for risk mitigation. However, several challenges remain, including limited availability of high-quality datasets, insufficient generalization of models under diverse environmental conditions, and minimal translation of research outcomes into practical policy or long-term field applications. This review underscores the need for multimodal data integration, real-time monitoring systems, and collaborative strategies among researchers, practitioners, and policymakers. Future directions should also include the adoption of digital twin and Building Information Modeling (BIM) concepts to advance intelligent, adaptive, and sustainable infrastructure maintenance in Indonesia.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Budiyarto, A., Salam, A., & Tashbir, H. (2023). Implementasi wireless sensor
network pada sistem manajemen kesehatan struktur jembatan. Jurnal
Telematika, 19(1), 6–13. https://doi.org/10.61769/telematika.v19i1.669
Fakhrurrozi, Ratmana, D. O., Winarsih, N. A. S., Saraswati, G. W., Rohman, M.
S., Saputra, F. O., Pramunendar, R. A., & Shidik, G. F. (2024). Prediksi
kerusakan bangunan pasca gempa bumi menggunakan metode deep neural
network. Jurnal Teknologi Sistem Informasi dan Aplikasi, 7(1), 131–142.
https://doi.org/10.32493/jtsi.v7i1.37181
Pratiwi, B. (2024). Penerapan model machine learning dalam pengembangan web
app “CRACKSAFE” untuk deteksi keretakan pada dinding bangunan.
Inisiatif: Jurnal Dedikasi Pengabdian Masyarakat, 3(1), 59–68.
Sukma, M., Wibowo, A., Sabri, F., & Irwan, A. G. (2024). Analisis beban tekan
pada struktur bangunan dari aplikasi SAP2000 menggunakan machine
learning. Jurnal Teknik Sipil Cendekia, 5(2), 993–1007 https://doi.org/10.51988/jtsc.v5i2.219
Tjen, J. (2022). Algoritma pendeteksi kerusakan struktur bangunan berbasis
korelasi jarak dan metode kuadrat terkecil parsial. Jurnal Edukasi dan
Penelitian Informatika (JEPIN), 8(3), 459–467.