INTEGRASI ARTIFICIAL INTELLIGENCE DAN DIGITAL TWIN UNTUK PEMELIHARAAN INFRASTRUKTUR DI INDONESIA

Main Article Content

Eci Aprilia

Abstract

Infrastructure plays a critical role in the economic and social development of countries, including Indonesia. Traditional, reactive maintenance methods often result in high operational costs, service disruptions, and safety risks. This study investigates the integration of Artificial Intelligence (AI) and Digital Twin (DT) technologies, supported by Structural Health Monitoring (SHM), as a predictive and adaptive approach for infrastructure maintenance. Through a systematic literature review of 15 international and 5 Indonesian studies published in the last decade, the research synthesizes global best practices and examines their relevance to Indonesia’s infrastructure context. Findings indicate that DT enables real-time virtual representation of physical assets, AI enhances predictive accuracy through data-driven analysis, and SHM provides continuous structural condition monitoring. The integration of these technologies creates a synergistic framework that reduces downtime, optimizes operational costs, and extends asset lifespan. Despite promising international applications, Indonesia faces challenges such as limited sensor deployment, low data quality, high investment costs, and adaptation to tropical and disaster-prone conditions. This study highlights the theoretical and practical implications of AI-DT-SHM integration, offering an adaptive maintenance framework that addresses local constraints and bridges the gap between global trends and local implementation 

Downloads

Download data is not yet available.

Article Details

Section

Articles

References

Bao, Y., Sun, H., Xu, Y., Guan, X., Pan, Q., & Liu, D. (2025). Recent advances in

structural health diagnosis: A machine learning perspective. Bridge

Engineering.

Cha, Y.-J., Ali, R., Lewis, J., & Büyüköztürk, O. (2024). Deep learning-based

structural health monitoring. Automation in Construction, 161, 105328.

Chaparro-Cárdenas, S. L., Ramirez-Bautista, J.-A., Córdova-Esparza, D.-M.,

Terven, J., Romero-Gonzalez, J.-A., Ramírez-Pedraza, A., & ChavezUrbiola, E. A. (2025). A technological review of digital twins and artificial

intelligence for personalized and predictive healthcare. Healthcare, 13, 1763.

Chen, S., Turanoglu Bekar, E., Bokrantz, J., & Skoogh, A. (2025). AI-enhanced

digital twins in maintenance: Systematic review, industrial challenges, and

bridging research–practice gaps. Journal of Manufacturing Systems, 82, 678–

699.

Diana, D., Putri, & Mukti, A. A. (2025). AI-driven digital twin for predictive

maintenance in urban infrastructure: Enhancing structural resilience and

sustainability. Civil Engineering Science and Technology (CEST), 1(1).

Kerkeni, R., Mhalla, A., & Bouzrara, K. (2025). Unsupervised learning and digital

twin applied to predictive maintenance for Industry 4.0. Journal of Electrical

and Computer Engineering

Mrzyka, P., Kubacki, J., Luttmer, J., Pluhna, R., & Nagarajah, A. (2023). Digital

twins for predictive maintenance: A case study for a flexible IT architecture.

Procedia CIRP, 119, 152–157.

Nagrani, S., & Narwane, V. S. (2025). Systematic literature review on digital twins

in predictive maintenance. Industrial Engineering Journal, 18(2),

Ogunleye, E., Anyaene, K., Oladetan, J. O., Lawal, A. B., Okeke, F. C., Ogunbule,

O. O., & Eromosele, E. I. (2025). Digital twins and AI in infrastructure

engineering: A global review of risk-informed design, operations, and

maintenance. Scientific Journal of Engineering and Technology (SJET), 2(2), 63–

70. Plevris, V., & Papazafeiropoulos, G. (2024). AI in structural health monitoring

for infrastructure maintenance and safety. Infrastructures, 9, 225.

Qing, X., Liao, Y., Wang, Y., Chen, B., Zhang, F., & Wang, Y. (2022). Machine

learning based quantitative damage monitoring of composite structure.

International Journal of Smart and Nano Materials, 13(2), 167–202.

Qiu, S., Zaheer, Q., Ali, F., Wajid, S., Chen, H., Ai, C., & Wang, J. (2025).

Exploring the impact of digital twin technology in infrastructure

management: A comprehensive review. Unpublished manuscript, Vilnius

Gediminas Technical University.

Sanitha, O. D., Amiany, & Rahayu, E. S. (2025). Digital twin sebagai konsep

integrasi model digital untuk pengelolaan dan efisiensi energi pada

bangunan. ALIBI – Jurnal Arsitektur dan Lingkungan Binaan, 2(1).

Sobowale, M., Elghaish, F., & Brooks, T. (2023). A systematic review of digital twin as

a predictive maintenance approach for existing buildings in the UK [Unpublished

manuscript]. Queen's University Belfast.

Spencer, B. F., Jr., Sim, S.-H., Kim, R. E., & Yoon, H. (2025). Advances in

artificial intelligence for structural health monitoring: A comprehensive

review. KSCE Journal of Civil Engineering, 29, 100203.

Sulistyo, W. A., & Beatrix, M. (2024). Analisis faktor pengaruh implementasi

digital twins pada proyek konstruksi di Kota Surabaya. Senadika.

Wati, D. L., Ranna, P., & Jin, O. F. (2024). Perkembangan integrasi digital twin

dan robotik di industri konstruksi. JMTS: Jurnal Mitra Teknik Sipil, 7(2),

611–620.

Zhong, D., Xia, Z., Zhu, Y., & Duan, J. (2023). Overview of predictive

maintenance based on digital twin technology. Heliyon, 9, e14534.