INTEGRASI ARTIFICIAL INTELLIGENCE DAN DIGITAL TWIN UNTUK PEMELIHARAAN INFRASTRUKTUR DI INDONESIA
Main Article Content
Abstract
Infrastructure plays a critical role in the economic and social development of countries, including Indonesia. Traditional, reactive maintenance methods often result in high operational costs, service disruptions, and safety risks. This study investigates the integration of Artificial Intelligence (AI) and Digital Twin (DT) technologies, supported by Structural Health Monitoring (SHM), as a predictive and adaptive approach for infrastructure maintenance. Through a systematic literature review of 15 international and 5 Indonesian studies published in the last decade, the research synthesizes global best practices and examines their relevance to Indonesia’s infrastructure context. Findings indicate that DT enables real-time virtual representation of physical assets, AI enhances predictive accuracy through data-driven analysis, and SHM provides continuous structural condition monitoring. The integration of these technologies creates a synergistic framework that reduces downtime, optimizes operational costs, and extends asset lifespan. Despite promising international applications, Indonesia faces challenges such as limited sensor deployment, low data quality, high investment costs, and adaptation to tropical and disaster-prone conditions. This study highlights the theoretical and practical implications of AI-DT-SHM integration, offering an adaptive maintenance framework that addresses local constraints and bridges the gap between global trends and local implementation
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Bao, Y., Sun, H., Xu, Y., Guan, X., Pan, Q., & Liu, D. (2025). Recent advances in
structural health diagnosis: A machine learning perspective. Bridge
Engineering.
Cha, Y.-J., Ali, R., Lewis, J., & Büyüköztürk, O. (2024). Deep learning-based
structural health monitoring. Automation in Construction, 161, 105328.
Chaparro-Cárdenas, S. L., Ramirez-Bautista, J.-A., Córdova-Esparza, D.-M.,
Terven, J., Romero-Gonzalez, J.-A., Ramírez-Pedraza, A., & ChavezUrbiola, E. A. (2025). A technological review of digital twins and artificial
intelligence for personalized and predictive healthcare. Healthcare, 13, 1763.
Chen, S., Turanoglu Bekar, E., Bokrantz, J., & Skoogh, A. (2025). AI-enhanced
digital twins in maintenance: Systematic review, industrial challenges, and
bridging research–practice gaps. Journal of Manufacturing Systems, 82, 678–
699.
Diana, D., Putri, & Mukti, A. A. (2025). AI-driven digital twin for predictive
maintenance in urban infrastructure: Enhancing structural resilience and
sustainability. Civil Engineering Science and Technology (CEST), 1(1).
Kerkeni, R., Mhalla, A., & Bouzrara, K. (2025). Unsupervised learning and digital
twin applied to predictive maintenance for Industry 4.0. Journal of Electrical
and Computer Engineering
Mrzyka, P., Kubacki, J., Luttmer, J., Pluhna, R., & Nagarajah, A. (2023). Digital
twins for predictive maintenance: A case study for a flexible IT architecture.
Procedia CIRP, 119, 152–157.
Nagrani, S., & Narwane, V. S. (2025). Systematic literature review on digital twins
in predictive maintenance. Industrial Engineering Journal, 18(2),
Ogunleye, E., Anyaene, K., Oladetan, J. O., Lawal, A. B., Okeke, F. C., Ogunbule,
O. O., & Eromosele, E. I. (2025). Digital twins and AI in infrastructure
engineering: A global review of risk-informed design, operations, and
maintenance. Scientific Journal of Engineering and Technology (SJET), 2(2), 63–
70. Plevris, V., & Papazafeiropoulos, G. (2024). AI in structural health monitoring
for infrastructure maintenance and safety. Infrastructures, 9, 225.
Qing, X., Liao, Y., Wang, Y., Chen, B., Zhang, F., & Wang, Y. (2022). Machine
learning based quantitative damage monitoring of composite structure.
International Journal of Smart and Nano Materials, 13(2), 167–202.
Qiu, S., Zaheer, Q., Ali, F., Wajid, S., Chen, H., Ai, C., & Wang, J. (2025).
Exploring the impact of digital twin technology in infrastructure
management: A comprehensive review. Unpublished manuscript, Vilnius
Gediminas Technical University.
Sanitha, O. D., Amiany, & Rahayu, E. S. (2025). Digital twin sebagai konsep
integrasi model digital untuk pengelolaan dan efisiensi energi pada
bangunan. ALIBI – Jurnal Arsitektur dan Lingkungan Binaan, 2(1).
Sobowale, M., Elghaish, F., & Brooks, T. (2023). A systematic review of digital twin as
a predictive maintenance approach for existing buildings in the UK [Unpublished
manuscript]. Queen's University Belfast.
Spencer, B. F., Jr., Sim, S.-H., Kim, R. E., & Yoon, H. (2025). Advances in
artificial intelligence for structural health monitoring: A comprehensive
review. KSCE Journal of Civil Engineering, 29, 100203.
Sulistyo, W. A., & Beatrix, M. (2024). Analisis faktor pengaruh implementasi
digital twins pada proyek konstruksi di Kota Surabaya. Senadika.
Wati, D. L., Ranna, P., & Jin, O. F. (2024). Perkembangan integrasi digital twin
dan robotik di industri konstruksi. JMTS: Jurnal Mitra Teknik Sipil, 7(2),
611–620.
Zhong, D., Xia, Z., Zhu, Y., & Duan, J. (2023). Overview of predictive
maintenance based on digital twin technology. Heliyon, 9, e14534.